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Flynn’s Taxonomy

• SISD — Single Instruction, Single Data
• Single processor system

• SIMD — Single Instruction, Multiple Data
• GPU

• MISD — Multiple Instruction, Single Data
• Not common, used for fault tolerant systems

• MIMD — Multiple Instruction, Multiple Data
• Most common parallel computing model
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The Usual Strategies

• SPMD — Single Program, Multiple Data
• Most common parallel executing model

• MPMD — Multiple Program, Multiple Data
• Master/Worker model

• Serial programming

• One process that spawns multiple threads (OpenMP)

• Multiple parallel processes that are single-threaded (SPMD
or MPMD)

• Hybrid, multiple parallel processes that use multiple
threads
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Parallel Programming

While developing a parallel program, one should keep in mind:

• load balancing

• communication

• synchronization

Effective parallel programming requires knowledge of

• Algorithms

• Architecture

• Languages
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Scalability

Parallel portion Serial portion
Amdahl’s Law (strong scaling)

→

S(N) =
ts
tp

=
1

(1− P) + P
N

where S is speedup, P is the proportion of your program that
can be parallelized, and N is the number of processors.

Pestimated =
1
S − 1
1
N − 1

Gustafson’s Law (weak scaling)
→

S(N) = N − (1− P)(N − 1)

Note: these neglect other limiting factors, such as: memory,
network, and disk latencies
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Messaging Passing Interface

Message Passing Interface (MPI) MPI is a specification

• not a language

• not a compiler specification

• not a specific implementation

MPI has implementations in:

• C

• C++

• Fortran

• Python, Perl, R, Ruby, Java, OCaml
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How to Think in MPI

How to think while developing a program using MPI: Every
process is executing the same program at the same time.
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MPI Version of Hello, World!

#include <iostream >

#include <boost/mpi.hpp >

int main(int argc , char* argv [])

{

boost ::mpi:: environment env(argc , argv);

boost ::mpi:: communicator world;

std::cout << "Hello from " << world.rank() << "

of " << world.size() << "!" << std::endl;

}

hello-mpi.cpp
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MPI Version of Hello, World!

PROGRAM main

IMPLICIT NONE

!

include ’mpif.h’

!

INTEGER :: i

INTEGER :: rank , size

INTEGER :: ierr

INTEGER :: status(MPI_STATUS_SIZE)

!

CALL MPI_INIT( ierr )

!

CALL MPI_COMM_RANK( MPI_COMM_WORLD , rank , ierr )

CALL MPI_COMM_SIZE( MPI_COMM_WORLD , size , ierr )

PRINT *, ’Hello from ’, rank , ’ of ’, size , ’!’

!

CALL MPI_FINALIZE

!

ENDPROGRAM main

hello-mpi.f90
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Point-to-Point Communication

Point-to-point communication involves only two different MPI
tasks: one task sends a message, while another task receives.
Each message contains a:

• source process

• target process

• tag

• payload containing arbitrary data.
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Blocking vs. Non-Blocking

Blocking:

• Returns only after data has arrived and is ready for use by
the program.

Non-Blocking:

• Returns immediately

• You should not modify your buffer during this time!

• Use wait routines to determine when it is safe to do so.

• Used to overlap computation with communication.
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Blocking send/recv

send(dest , tag , value)

MPI_SEND(value , count , datatype , dest , tag , comm ,

ierr)

recv(source , tag , value)

MPI_RECV(value , count , datatype , source , tag ,

comm , status , ierr)
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Blocking send/recv example

string message;

if (world.rank() == 0)

{

send(1, 0, string("Hello 1, from 0"));

recv(1, 1, message);

}

else

{

send(0, 1, string("Hello 0, from 1"));

recv(0, 0, message);

}

cout << message << endl;

blocking-broken.cpp

Output

See blocking-deadlock.cpp for another example.
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Blocking send/recv example

string message;

if (world.rank() == 0)

{

send(1, 0, string("Hello 1, from 0"));

recv(1, 1, message);

}

else

{

send(0, 1, string("Hello 0, from 1"));

recv(0, 0, message);

}

cout << message << endl;

blocking-broken.cpp

Output

See blocking-deadlock.cpp for another example.
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Blocking send/recv example

string message;

if (world.rank() == 0)

{

send(1, 0, string("Hello 1, from 0"));

recv(1, 1, message);

}

else

{

send(0, 1, string("Hello 0, from 1"));

recv(0, 0, message);

}

cout << message << endl;

blocking-broken.cpp

Output

See blocking-deadlock.cpp for another example.
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Blocking send/recv example fixed

string message;

if (world.rank() == 0)

{

send(1, 0, string("Hello 1, from 0"));

recv(1, 1, message);

}

else

{

recv(0, 0, message);

send(0, 1, string("Hello 0, from 1"));

}

cout << message << endl;

blocking-fixed.cpp

Hello 1, from 0

Hello 0, from 1

Output
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Blocking send/recv example fixed

string message;

if (world.rank() == 0)

{

send(1, 0, string("Hello 1, from 0"));

recv(1, 1, message);

}

else

{

recv(0, 0, message);

send(0, 1, string("Hello 0, from 1"));

}

cout << message << endl;

blocking-fixed.cpp

Hello 1, from 0

Hello 0, from 1

Output
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Non-blocking send/recv

isend(dest , tag , value)

MPI_ISEND(value , count , datatype , dest , tag , comm ,

ierr)

irecv(source , tag , value)

MPI_IRECV(value , count , datatype , source , tag ,

comm , status , ierr)
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Non-blocking send/recv example

vector <request > requests;

string message;

if (world.rank() == 0)

{

requests.push_back( world.isend(1, 0,

string("Hello 1, from 0")) );

requests.push_back( world.irecv(1, 1, message) );

}

else {

requests.push_back( world.isend(0, 1,

string("Hello 0, from 1")) );

requests.push_back( world.irecv(0, 0, message) );

}

wait_all(requests.begin (), requests.end());

for (unsigned i = 0; i < world.size(); ++i)

{

world.barrier ();

if (world.rank() == i)

cout << message << endl;

}

non-blocking.cpp
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Non-blocking send/recv gotchas

Do not read from, nor modify, the buffers until you’ve waited!
If you do so, you’ve created a race condition.
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Collective Operations

The most common collective operations:

• Broadcast

• Gather

• Scatter

• Reduce
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Broadcast

broadcast(comm , value , root)

int root_process = 0;

int value = 0;

if (world.rank() == root_process)

value = 1;

broadcast(world , value , root_process);

broadcast.cpp

mpirun -np 4 ./ broadcast

1 0 0 0
broadcast

1 1 1 1
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Gather

gather(comm , in_value , out_values , root)

int root_process = 1;

int value = world.rank();

vector <int > all_values;

gather(world , value , all_values , root_process);

gather.cpp

mpirun -np 4 ./ gather

0 1 2 3 gather 0 1 2 3
0 1 2 3
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Gather

all_gather(comm , in_value , out_values)

int value = world.rank();

vector <int > all_values;

all_gather(world , value , all_values);

all gather.cpp

mpirun -np 4 ./ all_gather

0 1 2 3 all gather 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
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Scatter

scatter(comm , in_values , out_value , root)

int root_process = 1;

int value;

vector <int > values;

if (world.rank() == root_process)

{

values.resize(world.size());

for (int i = 0; i < world.size(); ++i)

values[i] = i;

}

scatter(world , values , value , root_process);

scatter.cpp

mpirun -np 4 ./ scatter

0 1 2 3

scatter 0 1 2 3
0 1 2 3
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Reduce

reduce(comm , in_value , out_value , op, root)

int root_process = 1;

int value = world.rank();

if (world.rank() == root_process)

{

int sum;

reduce(world , value , sum , plus <int >(),

root_process);

cout << "sum: " << sum << endl;

}

else

reduce(world , value , plus <int >(), root_process);

reduce.cpp

mpirun -np 4 ./ reduce

0 1 2 3 reduce 0 1 2 3
6
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Reduce

all_reduce(comm , in_value , out_value , op)

int value = world.rank();

int sum;

all_reduce(world , value , sum , plus <int >());

cout << "rank: " << world.rank() << " sum: " <<

sum << endl;

all reduce.cpp

mpirun -np 4 ./ all_reduce

0 1 2 3 all reduce 0 1 2 3
6 6 6 6
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Load Balancing

Two common programs for partitioning finite element meshes:

• METIS
• Simpler interfaces
• Cannot freely distribute with your code unless permission

is obtained

• SCOTCH
• More complicated interfaces
• There are METIS-style interfaces (I haven’t tried them)
• Better licensing
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Load Balancing
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Load Balancing

Processor # Elements

0 144
1 141
2 144
3 148
4 140
5 148
6 145
7 144
total 1154

• Number of edge cuts: 121

• Number of edges: 2384

• Ratio: 5%
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Serial Version

• Prolong to faces

• Compute edge fluxes

• Compute local time derivative
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Mesh Construction

• Partition the mesh (METIS/SCOTCH)

• Separate storage into:
• elements along partition
• elements in interior
• edges along partition
• edges in interior

• Create maps that translate global element ids to local
element ids
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Parallel Version

• Prolong to faces for each element along partition boundary

• Send JQb to matching edges along partition boundary
• isend/request

• Prolong to faces for each element on interior of partition

• Compute Edge fluxes for edges on interior of partition

• Receive edge fluxes from edges along partition boundary
• irecv/request

• wait all on the requests

• Compute edge fluxes for edges on partition boundary

• Compute the time derivative for all elements
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