
Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

An Introduction to MPI with an Application to
DGSEM Code

James Custer

Department of Mathematics
Florida State University

04.09.2012

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Flynn’s Taxonomy

• SISD — Single Instruction, Single Data
• Single processor system

• SIMD — Single Instruction, Multiple Data
• GPU

• MISD — Multiple Instruction, Single Data
• Not common, used for fault tolerant systems

• MIMD — Multiple Instruction, Multiple Data
• Most common parallel computing model

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

The Usual Strategies

• SPMD — Single Program, Multiple Data
• Most common parallel executing model

• MPMD — Multiple Program, Multiple Data
• Master/Worker model

• Serial programming

• One process that spawns multiple threads (OpenMP)

• Multiple parallel processes that are single-threaded (SPMD
or MPMD)

• Hybrid, multiple parallel processes that use multiple
threads

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Parallel Programming

While developing a parallel program, one should keep in mind:

• load balancing

• communication

• synchronization

Effective parallel programming requires knowledge of

• Algorithms

• Architecture

• Languages

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Scalability

Parallel portion Serial portion
Amdahl’s Law (strong scaling)

→

S(N) =
ts
tp

=
1

(1− P) + P
N

where S is speedup, P is the proportion of your program that
can be parallelized, and N is the number of processors.

Pestimated =
1
S − 1
1
N − 1

Gustafson’s Law (weak scaling)
→

S(N) = N − (1− P)(N − 1)

Note: these neglect other limiting factors, such as: memory,
network, and disk latencies

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Messaging Passing Interface

Message Passing Interface (MPI) MPI is a specification

• not a language

• not a compiler specification

• not a specific implementation

MPI has implementations in:

• C

• C++

• Fortran

• Python, Perl, R, Ruby, Java, OCaml

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

How to Think in MPI

How to think while developing a program using MPI: Every
process is executing the same program at the same time.

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

MPI Version of Hello, World!

#include <iostream >

#include <boost/mpi.hpp >

int main(int argc , char* argv [])

{

boost ::mpi:: environment env(argc , argv);

boost ::mpi:: communicator world;

std::cout << "Hello from " << world.rank() << "

of " << world.size() << "!" << std::endl;

}

hello-mpi.cpp

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

MPI Version of Hello, World!

PROGRAM main

IMPLICIT NONE

!

include ’mpif.h’

!

INTEGER :: i

INTEGER :: rank , size

INTEGER :: ierr

INTEGER :: status(MPI_STATUS_SIZE)

!

CALL MPI_INIT(ierr)

!

CALL MPI_COMM_RANK(MPI_COMM_WORLD , rank , ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD , size , ierr)

PRINT *, ’Hello from ’, rank , ’ of ’, size , ’!’

!

CALL MPI_FINALIZE

!

ENDPROGRAM main

hello-mpi.f90

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Point-to-Point Communication

Point-to-point communication involves only two different MPI
tasks: one task sends a message, while another task receives.
Each message contains a:

• source process

• target process

• tag

• payload containing arbitrary data.

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Blocking vs. Non-Blocking

Blocking:

• Returns only after data has arrived and is ready for use by
the program.

Non-Blocking:

• Returns immediately

• You should not modify your buffer during this time!

• Use wait routines to determine when it is safe to do so.

• Used to overlap computation with communication.

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Blocking send/recv

send(dest , tag , value)

MPI_SEND(value , count , datatype , dest , tag , comm ,

ierr)

recv(source , tag , value)

MPI_RECV(value , count , datatype , source , tag ,

comm , status , ierr)

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Blocking send/recv example

string message;

if (world.rank() == 0)

{

send(1, 0, string("Hello 1, from 0"));

recv(1, 1, message);

}

else

{

send(0, 1, string("Hello 0, from 1"));

recv(0, 0, message);

}

cout << message << endl;

blocking-broken.cpp

Output

See blocking-deadlock.cpp for another example.

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Blocking send/recv example

string message;

if (world.rank() == 0)

{

send(1, 0, string("Hello 1, from 0"));

recv(1, 1, message);

}

else

{

send(0, 1, string("Hello 0, from 1"));

recv(0, 0, message);

}

cout << message << endl;

blocking-broken.cpp

Output

See blocking-deadlock.cpp for another example.

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Blocking send/recv example

string message;

if (world.rank() == 0)

{

send(1, 0, string("Hello 1, from 0"));

recv(1, 1, message);

}

else

{

send(0, 1, string("Hello 0, from 1"));

recv(0, 0, message);

}

cout << message << endl;

blocking-broken.cpp

Output

See blocking-deadlock.cpp for another example.

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Blocking send/recv example fixed

string message;

if (world.rank() == 0)

{

send(1, 0, string("Hello 1, from 0"));

recv(1, 1, message);

}

else

{

recv(0, 0, message);

send(0, 1, string("Hello 0, from 1"));

}

cout << message << endl;

blocking-fixed.cpp

Hello 1, from 0

Hello 0, from 1

Output

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Blocking send/recv example fixed

string message;

if (world.rank() == 0)

{

send(1, 0, string("Hello 1, from 0"));

recv(1, 1, message);

}

else

{

recv(0, 0, message);

send(0, 1, string("Hello 0, from 1"));

}

cout << message << endl;

blocking-fixed.cpp

Hello 1, from 0

Hello 0, from 1

Output

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Non-blocking send/recv

isend(dest , tag , value)

MPI_ISEND(value , count , datatype , dest , tag , comm ,

ierr)

irecv(source , tag , value)

MPI_IRECV(value , count , datatype , source , tag ,

comm , status , ierr)

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Non-blocking send/recv example

vector <request > requests;

string message;

if (world.rank() == 0)

{

requests.push_back(world.isend(1, 0,

string("Hello 1, from 0")));

requests.push_back(world.irecv(1, 1, message));

}

else {

requests.push_back(world.isend(0, 1,

string("Hello 0, from 1")));

requests.push_back(world.irecv(0, 0, message));

}

wait_all(requests.begin (), requests.end());

for (unsigned i = 0; i < world.size(); ++i)

{

world.barrier ();

if (world.rank() == i)

cout << message << endl;

}

non-blocking.cpp

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Non-blocking send/recv gotchas

Do not read from, nor modify, the buffers until you’ve waited!
If you do so, you’ve created a race condition.

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Collective Operations

The most common collective operations:

• Broadcast

• Gather

• Scatter

• Reduce

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Broadcast

broadcast(comm , value , root)

int root_process = 0;

int value = 0;

if (world.rank() == root_process)

value = 1;

broadcast(world , value , root_process);

broadcast.cpp

mpirun -np 4 ./ broadcast

1 0 0 0
broadcast

1 1 1 1

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Gather

gather(comm , in_value , out_values , root)

int root_process = 1;

int value = world.rank();

vector <int > all_values;

gather(world , value , all_values , root_process);

gather.cpp

mpirun -np 4 ./ gather

0 1 2 3 gather 0 1 2 3
0 1 2 3

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Gather

all_gather(comm , in_value , out_values)

int value = world.rank();

vector <int > all_values;

all_gather(world , value , all_values);

all gather.cpp

mpirun -np 4 ./ all_gather

0 1 2 3 all gather 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Scatter

scatter(comm , in_values , out_value , root)

int root_process = 1;

int value;

vector <int > values;

if (world.rank() == root_process)

{

values.resize(world.size());

for (int i = 0; i < world.size(); ++i)

values[i] = i;

}

scatter(world , values , value , root_process);

scatter.cpp

mpirun -np 4 ./ scatter

0 1 2 3

scatter 0 1 2 3
0 1 2 3

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Reduce

reduce(comm , in_value , out_value , op, root)

int root_process = 1;

int value = world.rank();

if (world.rank() == root_process)

{

int sum;

reduce(world , value , sum , plus <int >(),

root_process);

cout << "sum: " << sum << endl;

}

else

reduce(world , value , plus <int >(), root_process);

reduce.cpp

mpirun -np 4 ./ reduce

0 1 2 3 reduce 0 1 2 3
6

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Reduce

all_reduce(comm , in_value , out_value , op)

int value = world.rank();

int sum;

all_reduce(world , value , sum , plus <int >());

cout << "rank: " << world.rank() << " sum: " <<

sum << endl;

all reduce.cpp

mpirun -np 4 ./ all_reduce

0 1 2 3 all reduce 0 1 2 3
6 6 6 6

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Load Balancing

Two common programs for partitioning finite element meshes:

• METIS
• Simpler interfaces
• Cannot freely distribute with your code unless permission

is obtained

• SCOTCH
• More complicated interfaces
• There are METIS-style interfaces (I haven’t tried them)
• Better licensing

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Load Balancing

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Load Balancing

Processor # Elements

0 144
1 141
2 144
3 148
4 140
5 148
6 145
7 144
total 1154

• Number of edge cuts: 121

• Number of edges: 2384

• Ratio: 5%

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Serial Version

• Prolong to faces

• Compute edge fluxes

• Compute local time derivative

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Mesh Construction

• Partition the mesh (METIS/SCOTCH)

• Separate storage into:
• elements along partition
• elements in interior
• edges along partition
• edges in interior

• Create maps that translate global element ids to local
element ids

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Parallel Version

• Prolong to faces for each element along partition boundary

• Send JQb to matching edges along partition boundary
• isend/request

• Prolong to faces for each element on interior of partition

• Compute Edge fluxes for edges on interior of partition

• Receive edge fluxes from edges along partition boundary
• irecv/request

• wait all on the requests

• Compute edge fluxes for edges on partition boundary

• Compute the time derivative for all elements

Types of
Parallelism

What is MPI?

Point-to-Point
Communica-
tion

Blocking
Communication

Non-blocking
Communication

Collective
Operations

Broadcast

Gather

Scatter

Reduce

Load
Balancing

DGSEM
Application

Parallelization

Results

Results

0 1 2 3 4 5 6 7 8 9
Number of Cores

0

1

2

3

4

5

6

7

8

9

Sp
ee

du
p

MPI Implementation

data
ideal

	Types of Parallelism
	What is MPI?
	Point-to-Point Communication
	Blocking Communication
	Non-blocking Communication

	Collective Operations
	Broadcast
	Gather
	Scatter
	Reduce

	Load Balancing
	DGSEM Application
	Parallelization
	Results

